

RTI International									
-	Study design Important Steps in Metabolomics Analysis								
	• Match for factors such as gender, ethnicity, age, BMI (human studies)								
	 Use of same strains in animal studies 								
•	<u>Sample collection</u>								
	 Collection vials, anticoagulant use (heparin, citrate, EDTA) 								
•	Sample storage								
	 -20 °C, -80 °C, minimize freeze-thaw cycles 								
•	Sample preparation								
	• Optimize the methods and use them consistently throughout study								
	 Daily balance and pipette checks 								
•	Use of Quality Check (QC) samples								
	 Pooled QC samples (Phenotypic and combined pooled samples) 								
	• Use matching external pooled QC samples where pool samples cannot								
	be prepared from study samples								
	metabolomics study								

RTI International NMR Data Acquisition 1D NMR 1st increment of NOESY noesyprid (Bruker) CPMG (serum or plasma) cpmgpr1d (Bruker) To remove broadening of signals due to macromolecules (eg. Proteins and BRUKER lipids) 2D NMR (for structure elucidation) 2D J-Resolved _ COSY TOCSY _ HSQC

– HMBC

RTI International							
					NMR	Binning	
Peak shift can cause the same peak across multiple samples to fall into different bins		The entire NM regions with a The major dra boundaries. If a peak cross influence you	IR spectrum is a spectral wind awback of fixed ses the border r data analysis	s split into eve ow of typically d binning is th between two	nly spaced y 0.04 ppm. e <u>non-flexib</u> o bins it can	integral <u>ilit</u> y of the significantly	
$\begin{array}{c} Cltrate \\ \hline \\ \hline \\ HO \\ HO \\ \hline \\ HO \\ \end{array}$					Signals are sy multip	for citrate blit into ble bins	
Fixed Binning							
	2.	58 2.5	6 2.5	54 2.	52 2	.50	

R1	RTI International											
 Integrate bins (0.04 ppm bin size) Normalize integral of each bin to the total integral of each spectrum 										В	linning	
 Merge metadata 												
	Result is a spreadsheet ready for further multivariate data analysis and											
other statistical analysis												
	•			.,								
	Sample ID	Disease Group	[0.40 0.46]	[0.46 0.52]	[0.52 0.54]	[0.54 0.57]	[0.57 0.60]	[0.60 0.66]	[0.66 0.68]	[0.68 0.71]	[0.71 0.75]	
	C0559	Cases	7.60E-05	0.00E+00	7.32E-02	8.48E-02	3.20E-02	1.84E+00	1.31E-01	3.60E-01	3.67E-01	
	C0629	Cases	0.00E+00	1.78E-02	0.00E+00	2.18E-02	0.00E+00	1.08E+01	0.00E+00	0.00E+00	3.02E-02	
	C0640	Cases	3.44E-04	0.00E+00	1.83E-03	1.86E-04	0.00E+00	4.51E+00	0.00E+00	0.00E+00	0.00E+00	
	C0835	Cases	6.41E-04	0.00E+00	6.44E-03	0.00E+00	3.96E-03	3.28E+00	0.00E+00	5.12E-03	1.75E-02	
	D0613	Cases	6.63E-03	0.00E+00	0.00E+00	1.06E-02	0.00E+00	5.79E+00	0.00E+00	6.36E-02	3.02E-01	
	D0762	Cases	0.00E+00	0.00E+00	1.79E-02	1.98E-02	0.00E+00	9.37E+00	0.00E+00	0.00E+00	1.74E-02	
	D1113	Cases	3.14E-03	2.42E-03	8.02E-02	1.04E-01	5.32E-03	3.74E+00	0.00E+00	2.02E-02	1.84E-01	
	D1158	Cases	0.00E+00	3.71E-03	2.35E-02	4.83E-02	0.00E+00	5.02E+00	0.00E+00	1.91E-02	0.00E+00	
	D2090	Cases	0.00E+00	0.00E+00	2.45E-03	9.98E-04	0.00E+00	5.76E+00	0.00E+00	1.24E-02	1.04E-02	
	E0004	Cases	1.72E-03	0.00E+00	6.85E-02	3.05E-02	0.00E+00	1.47E+00	6.90E-02	3.61E-01	4.08E-01	
	E0195	Cases	0.00E+00	1.69E-03	5.57E-02	6.29E-02	0.00E+00	2.77E+00	1.34E-01	2.04E-01	4.56E-01	
	E0225	Cases	1.25E-03	0.00E+00	4 40E-03	169E-02	0.00E+00	9.17E+00	0.00E+00	1.08E-02	2.30E-02	
	E0309	auquases	4.11E-03	0.00E+00	2.23E-02	Chig4E S3	3.08E-03	3.542+06	0.00E+00	3.28E-02	9.09E-01	
	E0487	Cases	1.72E-03	0.00E+00	0.00E+00	1.00E-02	0.00E+00	4.00E+00	0.00E+00	1.36E-02	0.00E+00	
	F0036	Cases	1.66E-02	0.00E+00	0.00E+00	2.06E-02	0.00E+00	1.22E+01	1.04E-02	0.00E+00	5.97E-01	
	F0108	Cases	0.00E+00	2.31E-03	6.30E-03	1.11E-02	0.00E+00	7.17E+00	0.00E+00	1.65E-02	2.21E-01	
	A0233	Control	0.00E+00	1.86E-02	0.00E+00	1.82E-02	0.00E+00	1.61E+01	0.00E+00	2.91E-03	0.00E+00	
	A0490	Control	0.00E+00	0.00E+00	2.99E-03	3.60E-02	0.00E+00	2.97E+00	0.00E+00	4.00E-02	5.46E-01	
	A2003	Control	0.00E+00	0.00E+00	3.45E-02	2.20E-02	0.00E+00	1.80E+00	0.00E+00	0.00E+00	0.00E+00	
	C0586	Control	0.00E+00	1.69E-02	0.00E+00	6.64E-03	0.00E+00	1.92E+01	0.00E+00	6.51E-02	0.00E+00	
	C2177	Control	0.00E+00	0.00E+00	3.02E-02	3.59E-02	0.00E+00	2.35E+00	0.00E+00	3.19E-02	1.49E-01	
	D0177	Control	9.21E-03	0.00E+00	1.69E-02	1.47E-02	0.00E+00	2.43E+00	0.00E+00	4.46E-02	0.00E+00	
	D0729	Control	0.00E+00	1.88E-03	5.58E-02	7.87E-02	2.92E-02	3.16E+00	6.59E-02	2.80E-01	4.30E-01	
	D0909	Control	0.00E+00	1.08E-03	0.00E+00	5.69E-03	0.00E+00	2.49E+00	0.00E+00	1.01E-02	1.87E-01	
	D0945	Control	0.00E+00	4.79E-04	7.00E-03	0.00E+00	4.19E-03	3.99E+00	0.00E+00	1.11E-03	3.96E-02	
	D1174	Control	0.00E+00	9.33E-04	0.00E+00	3.43E-03	1.30E-02	7.21E+00	6.53E-03	0.00E+00	1.66E-02	
	D2054	Control	1.55E-03	0.00E+00	0.00E+00	1.22E-02	0.00E+00	2.07E+00	0.00E+00	1.28E-02	3.90E-01	ZADTI
	D2062	Control	2.39E-05	0.00E+00	6.04E-02	2.99E-02	0.00E+00	4.94E+00	0.00E+00	9.95E-03	0.00E+00	ØKII
	D2079	Control	2.73E-02	0.00E+00	1.81E-03	1.17E-02	0.00E+00	3.38E+01	7.87E-02	0.00E+00	5.91E+00	INTERNATIONAL

RTI International

Day 0 serum- Predicting Day 28 Response to Vaccine

RTI International		
	Metabo	Analyst: Functional Modules
	Please choose a functional module to proceed:	
	Statistical Analysis	Enrichment Analysis
	This module offers various commonly used statistical and machine learning methods from t-tests, ANOVA to PCA and PL-SOA. It also provides clustering and visualization such as dendrogram, heatmap, K- means, as well as classification based on random forests and SVM.	This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~5300 groups of biologically meaningful metabolite sets. Users can upload a list of compounds, a list of compounds with concentrations, or a concentration table.
	Pathway Analysis	O Time Series Analysis
	This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Analidopsis flutiana, Rice, Drosophila, Malaria, Budding yeast, E. coli., etc., with a total of ~1600 metabolic gathways.	This module supports data overview (PCA and heatmaps), two-way ANOVA; multivariate emprical Bayes time-series analysis for detecting distinctive temporal profiles across different experimental conditions, and ANOVA-aimuttaneous component analysis (ASCA) for identification of major patterns associated with each experimental factor.
	O Power Analysis	Biomarker Analysis
	This module allows you to upload a pilot data set to calculate the minimum number of samples required to detect the exsistence of a difference between two populations with a given degree of confidence.	To perform various ROC curve based biomarker analysis, It supports classical single biomarker analysis, multivariate biomarker analysis, and manual biomarker selection and evaluation.
	Integrated Pathway Analysis	Other Utilities
	To perform joint metabolic pathway analysis on results obtained from metabolomics and gene expression studies under the same experimental or biological	This module contains some utility functions commonly used for metabolomics data manipulation and analysis. At this moment, compound ID conversion is

RTI International		
	Data Upload	
	MetaboAnalyst 3.0 - a comprehensive tool suite for metabolomic data analysis	>
Image: Arrow of the state o	1) Upload your data Comma Separated Values (.csv) : 1 4 Data Type: Concentration Spectral bins Peak intensity table Commat: Samples in rows (unpaired) Data File: Choose File No The chosen 3 Zipped Files (.zip) : Data Type: No The chosen Data Tile: Choose File No The chosen Pair File: Choose File No The chosen Pair File: Choose File No The chosen	

